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We analyze the Coulomb interacting problem in undoped graphene layers by using an excitonic variational
ansatz. By minimizing the energy, we derive a gap equation which reproduces and extends known results. We
show that a full treatment of the exchange term, which includes the renormalization of the Fermi velocity, tends
to suppress the phase transition by increasing the critical coupling at which the excitonic instability takes place.
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I. INTRODUCTION

The role of Coulomb interactions in the low-energy re-
gime of undoped graphene layers has arisen great interest
and still remains somewhat controversial. This is rooted to
the poor screening properties of graphene, a peculiarity that
can be traced back to the linear density of states of the low-
energy theory, which vanishes at the Dirac point. An early
weak-coupling analysis of the problem, based on the
renormalization-group �RG� method, showed that the Cou-
lomb interaction is marginally irrelevant, flowing to a nonin-
teracting fixed point.1 This picture can be rigorously justified
at all couplings in the limit of a large number of electron
flavors.2 In that scenario, undoped graphene layers would
behave mostly as a noninteracting system of electrons with
minor traces of interactions reflected in the lifetime of
quasiparticles3 and in a logarithmic renormalization of the
Fermi velocity.1 Remarkably, this picture seems to match
reasonably well with current experimental data.4–6

The relative strength of the Coulomb interaction mea-
sured, as compared with the kinetic energy of the electrons,
is ruled by the dimensionless coupling constant g0�e2 /�vF,
where e is the electron charge, vF the Fermi velocity, and �
the dielectric constant of the medium in which graphene is
embedded. We use the subscript 0 to denote unscreened val-
ues of the coupling, see below. For samples in vacuum, e2

�14.4 eV Å, and vF�6.3 eV Å, so that g0�2.3. Density-
functional theory7,8 give a value for the screened coupling in
the range g�0.5−2. This puts graphene in the intermediate
coupling regime and hence the validity of the weak-coupling
analysis relies on the absence of a strong-coupling fixed
point in the RG transformation. Indications of such a fixed
point have been found by extending the weak-coupling RG
to higher orders in the coupling-constant expansion.9 The
experimental data would still be compatible with this strong-
coupling scenario if current setups had graphene sufficiently
isolated from the environment and could operate with per-
fectly neutral samples.

The possibility of phases beyond the reach of perturbative
or weak-coupling renormalization-group methods in un-
doped graphene has been explored in the literature by using
different approaches. The main candidate for a strong-
coupling phase is an excitonic condensate, in which electron
and holes bind together opening up a gap in the density of
states and rendering the system insulating. The mechanism

responsible for this phase would be the gain in exchange
energy arising from the long-range Coulomb interaction. A
gap equation for this transition has been derived within the
Dyson-Schwinger formalism10 and different solutions of this
equation yield �unscreened� critical couplings for the phase
transition around an unscreened coupling g0c�1−2.10–12

This scheme is equivalent to the summation of a class of
diagrams and can be considered an extension of weak cou-
pling approaches. Monte Carlo calculations in the lattice
have been carried out to analyze this problem,13,14 finding an
insulating phase above g0c�1.11 and g0c�1.66, respec-
tively. A phase transition beyond a certain coupling can also
be found for short-range interactions in the half-filled honey-
comb lattice,15 although the critical coupling takes the model
beyond the regime where the approximation of the electronic
bands by the Dirac equation is valid. Finally, the study of the
two-body problem in graphene, with Coulomb interactions,
leads to a remarkable instability of the wave function for a
critical coupling g0c=1,16 that might underlie the eventual
formation of excitons.

In this Rapid Communication, we investigate the possibil-
ity of an excitonic strong-coupling phase in undoped
graphene by using a variational ansatz. The method used
here can be extended in a straightforward way to finite tem-
peratures or to finite carrier concentrations. We derive a gap
equation similar to that obtained in the previous literature10,12

but with the inclusion of a the renormalization of the Fermi
velocity. By analyzing numerically and analytically the re-
sulting gap equation, we find that the latter produces a sup-
pression of the phase transition by increasing the critical cou-
pling.

II. MODEL AND VARIATIONAL ANSATZ

As we have mentioned, we will address the problem of an
undoped graphene sample with Coulomb interactions in the
low-energy regime, where the electron motion is described
by the Dirac equation. The Hamiltonian for this problem
reads

H = �
ks

sknks +
1

2�
q

Vqnqn−q, �1�

where s=� refers to the upper and lower cones, respectively.
In our model, the spin and valley degrees of freedom are
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considered only as extra degeneracies in the number of fer-
mions. The Coulomb potential is given by Vq=2�g /q, where
g is the dimensionless coupling constant introduced above.
We assume that g includes contributions from static
screening.2,10 In the random-phase approximation �RPA�,
transitions between the valence and conduction bands lead to
a momentum-independent dielectric constant, which can be
incorporated in a straightforward into this formalism. Alter-
natively, one can view this approach as the leading approxi-
mation in the limit N→�, where N is the number of fermion
flavors.17

Our goal is to analyze the ground state of this Hamil-
tonian by using a variational ansatz which includes the pos-
sibility of pairing between electron and holes. Such an ansatz
was proposed to study excitons formation in
semiconductors18 and is reminiscent of the ansatz used in the
BCS theory of superconductivity,

��� = �k�uk + vkck+
† ck−��D� . �2�

The ansatz contains a coherent superposition of states with a
different number of electron-hole pairs. Here �D� stands for
the filled Dirac sea and uk and vk are variational parameters
to be determined by minimizing the ground-state energy.
Without loss of generality, they are taken real. Notice that
they are not independent since the normalization of the wave
function imposes the constraint uk

2+vk
2=1.

III. DERIVATION OF THE GAP EQUATION

Following the lines of a typical variational calculation, the
energy of the ansatz is evaluated by projecting the Hamil-
tonian into this state. It has two contributions, the Hartree
and the exchange one, as shown in Fig. 1. The Hartree con-
tribution is zero, by virtue of the normal ordering of the
Hamiltonian with respect to the Dirac sea, which is physi-
cally related to the neutrality of charge of the global system.
The dominant contribution comes from the exchange energy,
which includes terms with a momentum transfer of q=k�
−k. The projected Hamiltonian reads then

	��:H:��� = �
k

k�vk
2 − uk

2� −
1

2 �
k,k�

V�k�−k�
2ukuk�vkvk�

+ cos2��k� − �k

2
��uk

2uk�
2 + vk

2vk�
2 �

+ sin2��k� − �k

2
��uk

2vk�
2 + vk

2uk�
2 � , �3�

where we have used the normal-ordered Hamiltonian in or-

der to carry out the calculation. The extreme condition must
be imposed respecting the normalization constraint. The re-
sult gives the following equation:


k + �
k�

V�k�−k� cos��k� − �k��uk�
2 − vk�

2 �ukvk = �uk
2

− vk
2��

k�

V�k�−k�uk�vk�. �4�

This equation can be simplified by introducing the following
parameters:

�k = k + �
k�

V�k�−k� cos��k� − �k��uk�
2 − vk�

2 � , �5�

	k = 2�
k�

V�k�−k�uk�vk�, �6�

Ek
2 = �k

2 + 	k
2. �7�

The first equation is the self-energy insertion to the electron
propagator, which adds to the linear term coming from the
noninteracting dispersion relation and represents a renormal-
ization of the Fermi velocity. The second equation introduces
	k, which can be identified with the gap that arises in the
electronic spectrum when excitons are formed. This is
clearly expressed in the third equation, which gives the dis-
persion relation of Bogoliubov quasiparticles in the excitonic
condensate.

In terms of these new parameters, the solution to the
variational problem reads: ukvk=

	k

2Ek
, vk

2=
1−�k/Ek

2 , uk
2

=
1+�k/Ek

2 . By plugging these expressions into the equation for
the gap, Eq. �6�, we get a self-consistent integral equation,
namely,

	k = �
k�

V�k�−k�
	k�

Ek�
. �8�

As we have already mentioned, a similar gap equation has
been already found by using the Schwinger-Dyson
formalism.10

Further insight can be obtained by carrying out the angu-
lar integral while keeping the lowest order terms in a
Legendre-polynomial expansion of the Coulomb interaction
V�k�−k�. This yields a simplified integral equation in the con-
tinuum limit of the problem,

	k = g�
0




dk�k�	k�

K�k,k��

��k�
2 + 	k�

2
, �9�

where we have introduced the following kernel:

K�k,k�� =
1

k
��k − k�� +

1

k�
��k� − k� . �10�

The main feature of this gap equation, as compared with
previous approaches, is the inclusion of the exchange correc-
tion to the free-electron dispersion relation, Eq. �5�.

FIG. 1. �Color online� Diagrams included in the ground-state
energy within the variational ansatz. �a� Hartree term, which is zero.
�b� Exchange term, which is the dominant one.
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IV. ANALYSIS OF THE GAP EQUATION

In order to extract information from the gap equation, we
make the following assumption:10,19 the dominant contribu-
tion to the gap equation corresponds to the region k�	�,
where 	�=	k=	�. We neglect the contribution to the conden-
sation energy of the modes with k�	�, as also done when
analyzing one-dimensional instabilities or in the BCS theory
of superconductivity. This allows us to make Eq��q and
write 	� as the lower limit of the integral,

	k � g�
	�




dk�k�	k�

K�k,k��
�k�

. �11�

By using the same type of reasoning, an expression for the �k
can be derived, which only retains the leading, most diver-
gent terms �and valid for �k	��,

�k = k +
g

4
k log�


k
� . �12�

This is the renormalization of the Fermi velocity that arises
from a RG analysis,1 which has been so far neglected in the
literature on the excitonic condensation. We will see shortly
that this logarithmic correction plays a crucial role in the
analysis of the gap equation.

We take derivatives in Eq. �11�. Using Eq. �10�, we obtain

k2	k� + 2k	k� + g�k�	k = 0, �13�

which has the form of a three-dimensional radial-
Schrödinger equation with a potential g�k�. The latter is the
running coupling constant in the RG sense, which has ap-
peared in a natural way from the exchange correction to the
linear dispersion relation. It reads

g�k� =
g

1 +
g

4
log�


k
� . �14�

The differential Eq. �13� must be supplemented with bound-
ary conditions that are also derived from Eq. �11�,

k2	k��k=	� = 0, �15�

�k	k� + 	k��k=
 = 0. �16�

The first one is the infrared condition, since it is evaluated at
the gap 	��
, while the second one is the ultraviolet one,
evaluated at the cutoff. Equations �13�, �15�, and �16� deter-
mine the function 	k up to a numerical constant, which is
fixed by the condition 	�=	k=	�.

V. ADIABATIC SOLUTION

A preliminary study of Eqs. �13�–�16� can be made by
assuming that g�k� varies slowly enough for an adiabatic
approximation to be reasonable. Noting that the case of a
constant potential g�k�=g admits an exact solution of the
form

	k = Ak−1/2�1+�1−4g� + Bk−1/2�1−�1−4g�,

the adiabatic solution can be found to be, following Ref. 11,

	k
ad =

C+ei��k� + C−e−i��k�

�k
g�k� −
1

4
1/4 , �17�

where ��k���	�
k dk�

k�
�g�k��− 1

4 . Implementation of boundary
conditions �15� and �16� yields the quantization rule ��
�
+�
+�	� =�n, where n is a positive integer and �k

�arctan�4g�k�−1. The goal is to solve for 	�, a nonzero
value meaning that there is an excitonic instability. The con-
dition g�k�1 /4 for all values of k, leads to the requirement
	�	min=
e−8�1−1/4g�. We find that a nonzero, real solution
of the quantization condition described above �with n=1�
satisfying 	�	min, exists for g greater than a critical value
gc�0.5, which marks the onset of the excitonic instability.

VI. NUMERICAL SOLUTION

We further check the previous analysis by numerically
solving Eq. �13� with the boundary conditions �15� and �16�.
The results are shown in Fig. 2. We find solutions for g
�gc�0.59, in reasonable agreement with the adiabatic ap-
proximation. The asymptotic limit 	k�1 /�k �see Eq. �17��
is only clearly visible for g�gc and k�
. A detailed analy-
sis of the region where �g−gc�→0+ suggests that 	�� �g
−gc�, see Fig. 3. For comparison, we also show the numeri-
cal results obtained by neglecting the renormalization of the
Fermi velocity. They reproduce correctly the main features
found in analytical studies, namely, gc=1 /4 and 	�

�e−A/�g−gc, where A is a constant.10–12

VII. CONCLUSIONS

We have analyzed the problem of Coulomb interactions in
undoped graphene by using a variational ansatz that includes

0 0.5 1
g

0.1

0.2

��

0 0.05 0.1 0.15
k��

4

8

12

�k

FIG. 2. �Color online� Left: dependence of 	� on g obtained by
numerically integrating Eq. �13� with the boundary conditions in
Eqs. �15� and �16�. Right: dependence of 	k on k for g=0.6, 0.65,
0.7, 0.75, and 0.8 �from top to bottom�. The thick black line shows
the position of the maxima of 	k, which give the value of 	�, see
Eq. �15�. The solutions are not normalized.
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FIG. 3. �Color online� Details of the dependence of 	� on g near
the transition. The inset on the right graph shows the results from
numerically solving Eq. �13� without velocity renormalization �i.e.,
assuming g�k�=g in Eq. �14��.
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the possibility of exciton formation. Our approach can be
readily extended to other two- and three-dimensional mate-
rials, as well as to finite temperatures and carrier
concentrations.20 It allows us to calculate the total free en-
ergy, which can be compared to that of other broken-
symmetry phases, or to level crossings, which indicate first-
order phase transitions. A first-order transition to a gapless
state is likely to take place when the carrier concentration is
changed, as in other low correlated materials with a low
carrier concentration.21

Our variational analysis reproduces the main features of
the excitonic transition in graphene.10 In addition, we find
that a renormalization of the Fermi velocity is a natural by-
product of the variational treatment. The resulting change in
one-particle energies leads to a cancellation of the leading
divergences with trigger the excitonic transition. A similar
effect is observed in the analysis of the excitonic transition
due to short-range interactions in graphene bilayers.22,23 Our
variational analysis leads to a critical coupling gc�0.59,
which is about a factor two larger than the critical coupling
obtained neglecting the Fermi velocity renormalization, gc
=1 /4.10–12,19 The renormalization of g to two loops gives a
transition at gc�0.83.9

The unscreened coupling constant in graphene is g0
=e2 /vF�2.3. Screening from a substrate reduces this value

to 2g0 / �1+�S�g0 /�S. Common substrates such as SiO2,
SiC, and BNi have �SiO2

�3.9, �SiC�9.7 and �BNi�4.5.
Screening makes the gapped phase less likely. In suspended
graphene, we can assume that the effective value of g is
modified solely by internal screening.2,10 Using the RPA, we
obtain g=g0 / �1+N�g0 /8�, where N=4 is the number of
electron flavors and g0=e2 /vF is the bare coupling constant.
Then, an upper bound of g is gmax=lime2/vF→� g�e2 /vF�
=2 /��0.64, which lies slightly above the value of gc ob-
tained with our variational ansatz. For the realistic value of
g0=2.3 we obtain g=0.50, which is below the critical value
gc�0.59 which we have found by solving Eq. �13�
numerically.24 Note, finally, that our mean-field ansatz does
not include quantum fluctuations that would increase the
value of gc.
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